Sodium stearate

Sodium stearate
Names
Preferred IUPAC name
Sodium octadecanoate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.011.354 Edit this at Wikidata
EC Number
  • 212-490-5
UNII
  • InChI=1S/C18H36O2.Na/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;/h2-17H2,1H3,(H,19,20);/q;+1/p-1 checkY
    Key: RYYKJJJTJZKILX-UHFFFAOYSA-M checkY
  • InChI=1/C18H36O2.Na/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20;/h2-17H2,1H3,(H,19,20);/q;+1/p-1
    Key: RYYKJJJTJZKILX-REWHXWOFAA
  • [Na+].[O-]C(=O)CCCCCCCCCCCCCCCCC
Properties
C18H35NaO2
Molar mass 306.466 g·mol−1
Appearance white solid
Odor slight, tallow-like odor
Density 1.02 g/cm3
Melting point 245 to 255 °C (473 to 491 °F; 518 to 528 K)
soluble
Solubility slightly soluble in ethanediol
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamond
2
1
0
Flash point 176 °C (349 °F; 449 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Sodium stearate (IUPAC: sodium octadecanoate) is the sodium salt of stearic acid. This white solid is the most common soap. It is found in many types of solid deodorants, rubbers, latex paints, and inks. It is also a component of some food additives and food flavorings.[1]

Production

[edit]

Sodium stearate is produced as a major component of soap upon saponification of oils and fats. The percentage of the sodium stearate depends on the ingredient fats. Tallow is especially high in stearic acid content (as the triglyceride), whereas most fats only contain a few percent. The idealized equation for the formation of sodium stearate from stearin (the triglyceride of stearic acid) follows:[2]

(C17H35CO2)3C3H5 + 3 NaOH → C3H5(OH)3 + 3 C17H35CO2Na

Sodium stearate can also be made by neutralizing stearic acid with sodium hydroxide.[2]

C17H35COOH + NaOH → C17H35COONa + H2O

Safety and environmental considerations

[edit]

Stearate salts, as found in many commercial soaps are of low toxicity, hence their wide use in domestic settings. They do pose some problems for wastewater treatment as they biodegrade relatively slowly and impose a high biological oxygen demand.[1]

References

[edit]
  1. ^ a b Schumann, Klaus; Siekmann, Kurt (2000). "Soaps". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a24_247. ISBN 978-3-527-30385-4.
  2. ^ a b Snell, Foster Dee (1942). "Soap and Glycerol". Journal of Chemical Education. 19 (4): 172. Bibcode:1942JChEd..19..172S. doi:10.1021/ed019p172.
[edit]

This article is sourced from Wikipedia. Content is available under the Creative Commons Attribution-ShareAlike License.