In chemistry, a nitrene or imene (R−:Ṅ·) is the nitrogen analogue of a carbene. The nitrogen atom is uncharged and monovalent,[1] so it has only 6 electrons in its valence level—two covalent bonded and four non-bonded electrons. It is therefore considered an electrophile due to the unsatisfied octet. A nitrene is a reactive intermediate and is involved in many chemical reactions.[2][3] The simplest nitrene, HN, is called imidogen, and that term is sometimes used as a synonym for the nitrene class.[4]
Electron configuration
[edit]In the simplest case, the linear N–H molecule (imidogen) has its nitrogen atom sp hybridized, with two of its four non-bonded electrons as a lone pair in an sp orbital and the other two occupying a degenerate pair of p orbitals. The electron configuration is consistent with Hund's rule: the low energy form is a triplet with one electron in each of the p orbitals and the high energy form is the singlet with an electron pair filling one p orbital and the other p orbital vacant.[5]
As with carbenes, a strong correlation exists between the spin density on the nitrogen atom which can be calculated in silico and the zero-field splitting parameter D which can be derived experimentally from electron spin resonance.[6] Small nitrenes such as NH or CF3N have D values around 1.8 cm−1 with spin densities close to a maximum value of 2. At the lower end of the scale are molecules with low D (< 0.4) values and spin density of 1.2 to 1.4 such as 9-anthrylnitrene and 9-phenanthrylnitrene.
Formation
[edit]Because nitrenes are so reactive, they are rarely isolated. Instead, they are formed as reactive intermediates during a reaction. There are two common ways to generate nitrenes:
- From azides by thermolysis or photolysis, with expulsion of nitrogen gas. This method is analogous to the formation of carbenes from diazo compounds.
- From isocyanates, with expulsion of carbon monoxide. This method is analogous to the formation of carbenes from ketenes.
Since formation of the nitrene typically starts from a diamagnetic precursor, the direct chemical product is a singlet nitrene, which then relaxes to its ground state triplet state. As has been shown for phenylazide as a model system, the direct photoproduct of photochemical-induced N2 loss can either be the singlet or triplet nitrene.[7][8][9] By using a triplet sensitizer, the triplet nitrene can also be formed without initial formation of the singlet nitrene.[10]
Isolated Nitrenes
[edit]Although highly reactive, some nitrenes could be isolated and characterized recently.
In 2019, a triplet nitrene was isolated by Betley and Lancaster, stabilized by coordination to a copper center in a bulky ligand.[11] Later on, Schneider and coworkers characterized Pd and Pt triplet metallonitrenes, where the organic residue is replaced by a metal.[12][13][14] In 2024, the groups of Beckmann, Ye and Tan reported the isolation and characterization of organic triplet nitrenes, which are protected from chemical reactivity by an extremely bulky ligand.[15][16]
Reactions
[edit]Nitrene reactions include:
- Nitrene C–H insertion. A nitrene can easily insert into a carbon to hydrogen covalent bond yielding an amine or amide. A singlet nitrene reacts with retention of configuration. In one study[17] a nitrene, formed by oxidation of a carbamate with potassium persulfate, gives an insertion reaction into the palladium to nitrogen bond of the reaction product of palladium(II) acetate with 2-phenylpyridine to methyl N-(2-pyridylphenyl)carbamate in a cascade reaction:
- Nitrene cycloaddition. With alkenes, nitrenes react to form aziridines, very often with nitrenoid precursors such as nosyl- or tosyl-substituted [N-(phenylsulfonyl)imino]phenyliodinane (PhI=NNs or PhI=NTs respectively)) but the reaction is known to work directly with the sulfonamide in presence of a transition metal based catalyst such as copper, palladium, or gold:[19][20][21][22]
- Arylnitrene ring-expansion and ring-contraction: Aryl nitrenes show ring expansion to 7-membered ring cumulenes, ring opening reactions and nitrile formations many times in complex reaction paths. For instance the azide 2 in the scheme below[6] trapped in an argon matrix at 20 K on photolysis expels nitrogen to the triplet nitrene 4 (observed experimentally with ESR and ultraviolet-visible spectroscopy) which is in equilibrium with the ring-expansion product 6.
Nitreno radicals
[edit]For several compounds containing both a nitrene group and a free radical group an ESR high-spin quartet has been recorded (matrix, cryogenic temperatures). One of these has an amine oxide radical group incorporated,[28] another system has a carbon radical group.[29]
In this system one of the nitrogen unpaired electrons is delocalized in the aromatic ring making the compound a σ–σ–π triradical. A carbene nitrogen radical (imidyl radical) resonance structure makes a contribution to the total electronic picture.
References
[edit]- ^ IUPAC, Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "nitrenes". doi:10.1351/goldbook.N04145
- ^ Lwowski, W., ed. (1970). Nitrenes. New York: Interscience.
- ^ Wentrup, C. (1984). Reactive Intermediates. New York: Wiley.
- ^ IUPAC, Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "imidogens". doi:10.1351/goldbook.I02951
- ^ Vyas, Shubham; Winter, Arthur H.; Hadad, Christopher M. (2013), "Theory and Computation in the Study of Nitrenes and their Excited-State Photoprecursors", Nitrenes and Nitrenium Ions, John Wiley & Sons, Ltd, pp. 33–76, doi:10.1002/9781118560907.ch2, ISBN 978-1-118-56090-7, retrieved 20 December 2024
}: CS1 maint: work parameter with ISBN (link) - ^ a b Kvaskoff, David; Bednarek, Paweł; George, Lisa; Waich, Kerstin; Wentrup, Curt (2006). "Nitrenes, Diradicals, and Ylides. Ring Expansion and Ring Opening in 2-Quinazolylnitrenes". J. Org. Chem. 71 (11): 4049–4058. doi:10.1021/jo052541i. PMID 16709043.
- ^ Gritsan, N. P.; Platz, M. S. (1 September 2006). "Kinetics, Spectroscopy, and Computational Chemistry of Arylnitrenes". Chemical Reviews. 106 (9): 3844–3867. doi:10.1021/cr040055+. ISSN 0009-2665.
- ^ Soto, Juan; Otero, Juan C. (24 October 2019). "Conservation of El-Sayed's Rules in the Photolysis of Phenyl Azide: Two Independent Decomposition Doorways for Alternate Direct Formation of Triplet and Singlet Phenylnitrene". The Journal of Physical Chemistry A. 123 (42): 9053–9060. doi:10.1021/acs.jpca.9b06915. ISSN 1089-5639.
- ^ Domenianni, Luis I.; Bauer, Markus; Schmidt-Räntsch, Till; Lindner, Jörg; Schneider, Sven; Vöhringer, Peter (2023). "Photoinduced Metallonitrene Formation by N2 Elimination from Azide Diradical Ligands". Angewandte Chemie International Edition. 62 (42) e202309618. doi:10.1002/anie.202309618. ISSN 1521-3773.
- ^ Murthy, Rajesh S.; Muthukrishnan, Sivaramakrishnan; Rajam, Sridhar; Mandel, Sarah M.; Ault, Bruce S.; Gudmundsdottir, Anna D. (25 January 2009). "Triplet-sensitized photolysis of alkoxycarbonyl azides in solution and matrices". Journal of Photochemistry and Photobiology A: Chemistry. 201 (2): 157–167. doi:10.1016/j.jphotochem.2008.10.015. ISSN 1010-6030.
- ^ Carsch, K. M.; DiMucci, I. M.; Iovan, D. A.; Li, A.; Zheng, S.-L.; Titus, C. J.; Lee, S. J.; Irwin, K. D.; Nordlund, D.; Lancaster, K. M.; Betley, T. A. (2019). "Synthesis of a Copper-Supported Triplet Nitrene Complex Pertinent to Copper-Catalyzed Amination". Science. 365 (6458): 1138–1143. Bibcode:2019Sci...365.1138C. doi:10.1126/science.aax4423. PMC 7256962. PMID 31515388.
- ^ Sun, Jian; Abbenseth, Josh; Verplancke, Hendrik; Diefenbach, Martin; de Bruin, Bas; Hunger, David; Würtele, Christian; van Slageren, Joris; Holthausen, Max C.; Schneider, Sven (November 2020). "A platinum(ii) metallonitrene with a triplet ground state". Nature Chemistry. 12 (11): 1054–1059. doi:10.1038/s41557-020-0522-4. hdl:11245.1/1d9bd22a-92be-40ac-9b3a-e6dc7df2afc9. ISSN 1755-4349.
- ^ Schmidt-Räntsch, Till; Verplancke, Hendrik; Lienert, Jonas N.; Demeshko, Serhiy; Otte, Matthias; Van Trieste III, Gerard P.; Reid, Kaleb A.; Reibenspies, Joseph H.; Powers, David C.; Holthausen, Max C.; Schneider, Sven (2022). "Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes". Angewandte Chemie International Edition. 61 (9) e202115626. doi:10.1002/anie.202115626. ISSN 1521-3773. PMC 9305406. PMID 34905281.
- ^ Schmidt-Räntsch, Till; Verplancke, Hendrik; Kehl, Annemarie; Sun, Jian; Bennati, Marina; Holthausen, Max C.; Schneider, Sven (23 September 2024). "C═C Dissociative Imination of Styrenes by a Photogenerated Metallonitrene". JACS Au. 4 (9): 3421–3426. doi:10.1021/jacsau.4c00571. PMC 11423323. PMID 39328761.
- ^ Janssen, Marvin; Frederichs, Thomas; Olaru, Marian; Lork, Enno; Hupf, Emanuel; Beckmann, Jens (19 July 2024). "Synthesis of a stable crystalline nitrene". Science. 385 (6706): 318–321. doi:10.1126/science.adp4963.
- ^ Wang, Dongmin; Chen, Wang; Chen, Haonan; Chen, Yizhen; Ye, Shengfa; Tan, Gengwen (19 November 2024). "Isolation and characterization of a triplet nitrene". Nature Chemistry: 1–6. doi:10.1038/s41557-024-01669-9. ISSN 1755-4349.
- ^ Thu, Hung-Yat; Yu, Wing-Yiu; Che, Chi-Ming (2006). "Intermolecular Amidation of Unactivated sp2 and sp3 C–H Bonds via Palladium-Catalyzed Cascade C–H Activation/Nitrene Insertion". J. Am. Chem. Soc. 128 (28): 9048–9049. doi:10.1021/ja062856v. PMID 16834374.
- ^ Savarin, Cécile G.; Grisé, Christiane; Murry, Jerry A.; Reamer, Robert A.; Hughes, David L. (2007). "Novel Intramolecular Reactivity of Oximes: Synthesis of Cyclic and Spiro-Fused Imines". Org. Lett. 9 (6): 981–983. doi:10.1021/ol0630043. PMID 17319674.
- ^ Li, Zigang; Ding, Xiangyu; He, Chuan (2006). "Nitrene Transfer Reactions Catalyzed by Gold Complexes". J. Org. Chem. 71 (16): 5876–5880. doi:10.1021/jo060016t. PMID 16872166. S2CID 43641348.
- ^ Evans, David A.; Faul, Margaret M.; Bilodeau, Mark T. (1994). "Development of the Copper-Catalyzed Olefin Aziridination Reaction". J. Am. Chem. Soc. 116 (7): 2742–2753. doi:10.1021/ja00086a007. S2CID 55554519.
- ^ Brandt, Peter; Sodergren, Mikael J.; Andersson, Pher G.; Norrby, Per-Ola (2000). "Mechanistic Studies of Copper-Catalyzed Alkene Aziridination". J. Am. Chem. Soc. 122 (33): 8013–8020. doi:10.1021/ja993246g. S2CID 98310736.
- ^ Watson, Iain D. G.; Yu, Lily; Yudi, Andrei K. (2006). "Advances in Nitrogen Transfer Reactions Involving Aziridines". Acc. Chem. Res. 39 (3): 194–206. doi:10.1021/ar050038m. PMID 16548508.
- ^ Yudin, Andrei K., ed. (2007). Aziridines and Epoxides in Organic Synthesis. p. 120. ISBN 978-3-527-31213-9.
- ^ The quinazoline is prepared from the corresponding bromide and sodium azide. The azide is in equilibrium with the tetrazole 3.
- ^ Sundberg, Richard J.; Suter, Stuart R.; Brenner, Martin (1972). "Photolysis of 0-substituted aryl azides in diethylamine. Formation and autoxidation of 2-diethylamino-1H-azepine intermediates". Journal of the American Chemical Society. 94 (2): 513–520. doi:10.1021/ja00757a032.
- ^ Patel, Sajan C.; Burns, Noah Z. (2022). "Conversion of Aryl Azides to Aminopyridines". Journal of the American Chemical Society. 144 (39): 17797–17802. doi:10.1021/jacs.2c08464.
- ^ Pearson, Tyler J.; Shimazumi, Ryoma; Driscoll, Julia L.; Dherange, Balu D.; Park, Dong-Il; Levin, Mark D. (2023). "Aromatic nitrogen scanning by ipso-selective nitrene internalization". Science. 381 (6665): 1474–1479. doi:10.1126/science.adj5331. PMC 10910605.
- ^ Lahti, Paul M.; Esat, Burak; Liao, Yi; Serwinski, Paul; Lan, Jiang; Walton, Richard (30 May 2001). "Heterospin organic molecules: nitrene–radical linkages". Polyhedron. 20 (11–14): 1647–1652. doi:10.1016/S0277-5387(01)00667-2.
- ^ Sander, Wolfram; Grote, Dirk; Kossmann, Simone; Neese, Frank (2008). "2,3,5,6-Tetrafluorophenylnitren-4-yl: Electron Paramagnetic Resonance Spectroscopic Characterization of a Quartet-Ground-State Nitreno Radical". J. Am. Chem. Soc. 130 (13): 4396–4403. doi:10.1021/ja078171s. PMID 18327939.